Geometric particle swarm optimization for robust visual ego-motion estimation via particle filtering
نویسندگان
چکیده
Conventional particle filtering-based visual ego-motion estimation often suffers from large local linearization errors in the case of abrupt camera motion. The main contribution of this paper is to present a novel particle filteringbased visual ego-motion estimation algorithm that is especially robust to the abrupt camera motion. The robustness to the abrupt camera motion is achieved by multi-layered importance sampling via particle swarm optimization (PSO), which iteratively moves particles to higher likelihood region without local linearization of the measurement equation. Furthermore, we make the proposed visual ego-motion estimation algorithm in real-time by reformulating the conventional vector space PSO algorithm in consideration of the geometry of the special Euclidean group SE (3), which is a Lie group representing the space of 3-D camera poses. The performance of our proposed algorithm is experimentally evaluated and compared with the local linearization and unscented particle filter-based visual ego-motion estimation algorithms on both simulated and real data sets.
منابع مشابه
ISOGEOMETRIC STRUCTURAL SHAPE OPTIMIZATION USING PARTICLE SWARM ALGORITHM
One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the a...
متن کاملOKPS: A Reactive/Cooperative Multi-Sensors Data Fusion Approach Designed for Robust Vehicle Localization
This paper presents the Optimized Kalman Particle Swarm (OKPS) filter. This filter results from two years of research and improves the Swarm Particle Filter (SPF). The OKPS has been designed to be both cooperative and reactive. It combines the advantages of the Particle Filter (PF) and the metaheuristic Particle Swarm Optimization (PSO) for ego-vehicles localization applications. In addition to...
متن کاملGENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA DEMOCRATIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR STRUCTURAL DAMAGE PROGNOSIS
This paper presents a new model updating approach for structural damage localization and quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive cost function is introduced by employing the main diagonal and anti-diagonal members of the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its analytical model. Then, ...
متن کاملSmall and Dim Target Detection via Lateral Inhibition Filtering and Artificial Bee Colony Based Selective Visual Attention
This paper proposed a novel bionic selective visual attention mechanism to quickly select regions that contain salient objects to reduce calculations. Firstly, lateral inhibition filtering, inspired by the limulus' ommateum, is applied to filter low-frequency noises. After the filtering operation, we use Artificial Bee Colony (ABC) algorithm based selective visual attention mechanism to obtain ...
متن کاملAnalysis of Block Matching Algorithm Based on Particle Swarm Optimization and Differential Evolution
Block matching algorithm for motion estimation with the concept of two optimization techniques Particle Swarm Optimization (PSO) and Differential Evolution (DE) are carried out. Motion Estimation results shows that the DE algorithm for motion estimation gives improved PSNR value when compared with PSO algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 31 شماره
صفحات -
تاریخ انتشار 2013